Ein neues Erdalkalimetall–Chlorooxometallat mit Ir^{5+} : $Ba_5IrIn_2Al_2O_{13}Cl^*$

M. Neubacher und Hk. Müller-Buschbaum

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40–60, W–2300 Kiel (FRG)

(Eingegangen am 21. März 1991)

Abstract

The previously unknown compound $Ba_5IrIn_2Al_2O_{13}Cl$ was prepared as single crystals and investigated by means of X-rays (space group D_{6h}^4 - $P6_3/mmc$; a=5.860 Å; c=25.101 Å; Z=2). In the giant molecule, face-sharing triple octahedra, arranged around Ir^{5+} and In^{3+} , are connected at the corners to Al_2O_7 double tetrahedra. There are three different barium positions which are coordinated in a characteristic way to O^{2-} and Cl^- . The relationship of this to other structures containing face-sharing octahedra is discussed.

Zusammenfassung

Die bislang unbekannte Verbindung Ba₅IrIn₂Al₂O₁₃Cl wurde einkristallin dargestellt und röntgenographisch untersucht (Raumgruppe D_{6h}^4 -P6₃/mmc; a=5,860 Å; c=25,101 Å; Z=2). Flächenverknüpfte, geordnet mit Ir⁵⁺ und In³⁺ besetzte Oktaedertripel sind im Kristallverband mit Al₂O₇-Tetraederdoppeln über Ecken verknüpft. Es treten drei verschiedene Bariumlagen auf, die durch O²⁻ und Cl⁻ in charakteristischer Weise koordiniert sind. Der Zusammenhang mit anderen Strukturen, die flächenverknüpfte Oktaeder aufweisen, wird diskturiert.

1. Einleitung

Bereits im Jahre 1957 wurde durch die Darstellung und Strukturaufklärung von Sr₂IrO₄ [1] das erste Glied einer Reihe von Erdalkalimetall–Oxoiridaten entdeckt. Es folgten Untersuchungen weiterer Stoffe an mikrokristallinem Material, von denen hier einige Beispiele erwähnt seien: SrIr_{0,5}Ru_{0,5}O₃ [2], BaIr_{1/3}Ti_{2/3}O₃ [3], Ba_{2/3}Sr_{1/3}IrO₃ [4], SrIrO₃ [5], Ba₃LnIr₂O₉ (Ln=Y, Sm) [6] und Ba₂InIrO₆ [7]. In neuerer Zeit gelang es, Erdalkalimetall–Oxoiridate auch einkristallin darzustellen und röntgenographisch aufzuklären. Genannt seien hier die Arbeiten über BaIr_{0,67}Be_{0,33}O₃ [8], Ba₅Ir₂AlO₁₁ [9], Ba₇Ir₆O₁₉ [10], Ba₅(Ir,Ru)₃O₁₂ [11], Ba₉Ir_{3,2}Mn_{5,8}O₂₇ [12], Ba₄Ir₃O₁₀ [13], Ba₄Ir_{1,45}Ti_{1,55}O₁₀ [14] und Ba₄Ir₂AlO₁₀ [15].

^{*}Herrn Professor W. Bronger und Herrn Professor Ch. J. Raub zu ihren 60. Geburtstagen gewidmet.

Erdalkalimetall–Oxometallate des Rutheniums und Platins, die denen des Iridiums sehr ähnlich sind, wurden in jüngster Zeit dargestellt und deren Kristallstrukturen an Einkristallen aufgeklärt. Es handelt sich hierbei um Ba₅Ru₂O₉Cl₂ [16], Ba₇Ru₄O₁₅Cl₂ [17], Ba₅RuTaO₉Cl₂ [18], Ba₆Ru_{2,5}Mn_{0,5}O₁₂Cl₂ [19] sowie Ba₁₀Fe₈Pt₂O₂₅Cl₂ [20]. Der Aufbau der letztgenannten Verbindungen wird im wesentlichen von der Umgebung der kleinen Kationen (Ruthenium, Tantal, Eisen, Mangan, Platin) bestimmt. Diese sind sowohl oktaedrisch als auch tetraedrisch von Sauerstoff koordiniert und auf unterschiedliche Weise im Raum verknüpft. Die dadurch entstehende dreidimensionale Anordnung von Koordinationspolyedern um die kleinen Ionen wird in all diesen Verbindungen durch Ba²⁺-, O²⁻- und Cl⁻-Ionen aufgefüllt. Cl⁻ tritt dabei ausschließlich als Koordinationspartner von Ba²⁺ auf.

Zum ersten Mal ist es jetzt gelungen, ein Barium-Chlorooxometallat mit Iridium darzustellen und röntgenographisch die Kristallstruktur aufzuklären. Hierüber wird im folgenden Beitrag berichtet.

2. Darstellung und Strukturaufklärung von Ba5IrIn2Al2O13Cl

Für die Synthese von $Ba_5IrIn_2Al_2O_{13}Cl$ wurde auf Erfahrungen bei der Darstellung der in der Einleitung genannten Halogenooxoverbindungen des Rutheniums und des Platins zurückgegriffen. Ir: In_2O_3 :BaCO₃ wurden im Verhältnis 2:1:4 vermengt und mit einem fünffachen Überschuß an $BaCl_2 \cdot 2H_2O$ in einem Korundschiffchen 3 Tage an Luft auf 1000 °C erhitzt. Im Schmelzkuchen fanden sich tiefschwarze Einkristalle von regelmäßiger hexagonaler Gestalt. Die analytische Untersuchung mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10 000) zeigt mit standardfreier Meßtechnik die Anteile der Elemente Barium, Iridium, Aluminium, Indium und Chlor nahe bei der endgültigen röntgenographisch ermittelten Zusammensetzung. Aluminium wurde bei der Reaktion der Ausgangsstoffe aus dem Korundschiffchen eingebaut.

Die Darstellung von mikrokristallinem Material der Zusammensetzung $Ba_5IrIn_2Al_2O_{13}Cl$ gelang mit stöchiometrischer Einwaage der Komponenten BaO_2 , Iridium, In_2O_3 , Al_2O_3 und $BaCl_2 \cdot 2H_2O$. Im Gegensatz zur Synthese der Einkristalle wurde jedoch BaO_2 anstelle von $BaCO_3$ eingesetzt, um die Reaktion bei einer niedrigeren Temperatur (900 °C) durchführen zu können. Hierdurch wurde ein zu rasches Verdampfen von $BaCl_2$ vermieden. Pulverdiffraktogramme zeigen geringfügige Mengen von Fremdphasen, deren Identifizierung wegen der schwachen Intensität der Nebenreflexe nicht eindeutig möglich ist.

Mit Weissenberg-, Precession- und Laueaufnahmen wurden die Abmessungen der Elementarzelle und Auslöschungsbedingungen bestimmt. Die Messung der Reflexintensitäten erfolgte mit einem Vierkreisdiffraktometer. Die mit dem Programmpaket SHELX-76 [21] verfeinerten Parameter und isotropen Temperaturfaktoren gibt Tabelle 1 zusammen mit den kristallographischen Daten und Meßbedingungen wieder. In Tabelle 2 sind die mit den Werten von Tabelle 1 berechneten wichtigsten interatomaren Abstände zusammengefaßt.

TABELLE 1

	Lage	x	y	z	B (Ų)		
Ba(1)	(2b)	0,0	0,0	0,25	1,55(6)		
Ba(2)	(4f)	0,6667	0,3333	0,6300(1)	0,54(3)		
Ba(3)	(4f)	0,6667	0,3333	0,4601(1)	0,52(3)		
Ir	(2a)	0,0	0,0	0,0	0,20(2)		
In	(4e)	0,0	0,0	0,3876(1)	0,35(3)		
Al	(4f)	0,6667	0,3333	0,1836(4)	0,008(126)		
Cl	(2c)	0,6667	0,3333	0,75	1,2(2)		
0(1)	(12k)	0,172(3)	-0,172(3)	0,8436(7)	1.9(3)		
0(2)	(12k)	0,155(2)	-0,155(2)	0,0490(5)	0,4(2)		
0(3)	(2d)	0,6667	0,3333	0,25	1,7(8)		
Kristallogra	phische Date	en und Meßbed	lingungen				
Zellparameter	r (Å)	a = 5,860	a = 5,860(2); c = 25,101(9)				
Zellvolumen	(Å ³)	746,5	746,5				
Raumgruppe		$D_{6h}^{4} - P6_{3}$	$D_{6b}^{4} - P6_{3}/mmc$				
Formeleinhei	ten/EZ	Z=2	Z=2				
Diffraktomete	er	4-Kreis,	4-Kreis, Siemens AED 2				
Strahlung/Mo	nochromator	Μο Κα/Ο	Mo Ka/Graphit, eben				
2θ -Bereich (Grad)	5-70	5-70				
Meßmodus		$\Omega/2\theta$	$\Omega/2\theta$				
Schrittweite	(Grad 2θ)	0,08	0,08				
Zeit/Schritt		1–3 s	1–3 s				
Korrekturen		Polarisat	Polarisations- und Lorentz-Faktor, Untergrund, empirische				
		Absorpti	Absorption [24]				
Reflexanzahl $(F_0 > 6\sigma F_0)$		433	433				
Gütefaktor		R = 0.05	<i>R</i> =0,054				

Parameter^a für Ba₅IrIn₂Al₂O₁₃Cl: in der Raumgruppe D_{6h}^4 –P6₃/mmc sind folgende Punktlagen besetzt

*Standardabweichungen in Klammern.

TABELLE 2 Interatomare Abstände $(Å)^a$ für Ba₅IrIn₂Al₂O₁₃Cl

Ba1-01	2,93(2)	(6×)	In-01	2,07(2)	(3×)
Ba103	3,383(1)	(3×)	In-O2	2,24(1)	(3×)
Ba1-Cl	3,383(1)	(3×)			
			Al03	1,67(1)	
Ba202	2,72(1)	(3×)	Al-01	1,77(2)	(3×)
Ba202	3,01(2)	(6×)			
Ba2Cl	3,015(3)		Ir–O2	2,00(1)	(6×)
Ba3-02	2,87(1)	(3×)	Ir–In	2,821(3)	(2×)
Ba3-02	2,94(1)	(6×)			
Ba3-01	3,35(2)	(3×)			

*Standardabweichungen in Klammern.

Alle Rechnungen wurden auf der elektronischen Rechenanlage CRVAX 8550 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Progamm [22, 23] erstellt.

3. Beschreibung und Diskussion der Kristallstruktur von Ba₅IrIn₂Al₂O₁₃Cl

Die Struktur der hier untersuchten Verbindung $Ba_5IrIn_2Al_2O_{13}Cl$ ist trotz unterschiedlicher Bruttoformel mit dem Chlorooxometallat $Ba_{10}Fe_8Pt_2O_{25}Cl_2$ [20] isotyp. Auf diese Tatsache soll jedoch erst am Ende dieses Kapitels eingegangen werden. Der Aufbau von $Ba_5IrIn_2Al_2O_{13}Cl$ ist im wesentlichen durch drei charakteristische Koordinationssphären zu beschreiben:

(1) Iridium und Indium sind jeweils oktaedrisch durch Sauerstoff koordiniert. Abbildung 1 zeigt, daß ein IrO_6 - (enge Schraffur) und zwei InO_6 -Oktaeder (weite Schraffur) über Flächen zu einem (In,Ir,In)O₁₂-Oktaedertripel verknüpft sind.

Abb. 1. Perspektivische Darstellung der Struktur von $Ba_5IrIn_2Al_2O_{13}Cl$ im Bereich einer Elementarzelle: eng schraffierte Oktaeder, Ir^{5+} ; weit schraffierte Oktaeder, In^{3+} ; schraffierte Tetraeder, Al^{3+} ; Kugel mit Kreuz, Ba^{2+} ; Kugel mit Segment, Cl^- ; kleine Kugel, O^{2-} .

Abb. 2. Koordinationspolyeder um Ba^{2+} in $Ba_5IrIn_2Al_2O_{13}Cl$: Kugel mit Kreuz, Ba^{2+} ; Kugel mit Segment, Cl^- ; leere Kugel, O^{2-} .

(2) Die tetraedrisch von O^{2-} koordinierten Al^{3+} -Ionen bilden durch Eckenverknüpfung zweier Polyeder Al_2O_7 -Tetraederdoppel. Abbildung 1 verdeutlicht auch die Anordnung und Verknüpfung der ($IrIn_2$) O_{12} - und der Al_2O_7 -Baugruppen im Bereich einer Elementarzelle. Innerhalb dieser Polyedervernetzung treten die Oktaedertripel bzw. Tetraederdoppel zueinander isoliert auf, wogegen die Oktaeder- und Tetraederschichten untereinander über Polyederecken vernetzt sind. Dieser recht lockere Polyederverband wird durch Ba²⁺ und Cl⁻ aufgefüllt. Abbildung 1 zeigt diese Ionen in Kugelform.

(3) Die dritte Koordinationssphäre um die Ba²⁺-Ionen ist zur besseren Übersicht in Abb. 2 dargestellt. Sie leitet sich für alle drei mit Ba²⁺ besetzten Punktlagen im Prinzip von einem Kuboktaeder ab. Ba(3) ist nur von O²⁻ in hexagonal dichtester Packung (3 O²⁻/6 O²⁻/3 O²⁻) umgeben. Die mit Ba(1) besetzte Lage zeigt ebenfalls kuboktaedrische Koordination. Allerdings sind drei O²⁻ eines BaO₁₂-Polyeders durch 3 Cl⁻ ausgetauscht, so daß diese dichteste Packung mit 3 O²⁻/3 O²⁻ + 3 Cl⁻/3 O²⁻ beschrieben werden kann. Barium der Lage Ba(2) weist eine modifizierte kuboktaedrische Koordination auf. Drei O²⁻-Ionen werden durch ein Cl⁻-Ion ersetzt, so daß eine (3 O²⁻/ 6 O²⁻/Cl⁻)-Umgebung resultiert.

Wie bereits erwähnt wurde, zeigt $Ba_5IrIn_2Al_2O_{13}Cl$ den Aufbau von $Ba_{10}Fe_8Pt_2Cl_2O_{25}$, d.h. die im Zusammenhang mit den Abb. 1 und 2 beschriebenen Polyeder und deren Verknüpfung wurden auch für $Ba_{10}Fe_8Pt_2Cl_2O_{25}$ beobachtet. Im Detail gibt es jedoch einen wichtigen Unterschied. Die Kristallstruktur von $Ba_{10}Fe_8Pt_2Cl_2O_{25}$ kann nur mit einem Sauerstoffdefizit beschrieben werden. Röntgenstrukturanalysen ergaben eine Halbbesetzung der mit O^{2-} besetzten Lage (2d). Im Mikrobereich der Kristallstruktur führt der Unterschuß von O^{2-} dazu, daß eine verknüpfende Spitze der Fe_2O_7 -Tetraederdoppel pro Elementarzelle statistisch nicht besetzt ist. Ein vergleichbarer Unterschuß von O^{2-} existiert bei der hier untersuchten Substanz $Ba_5IrIn_2Al_2O_{13}Cl$ nicht, da im Gegensatz zu Platin Iridium in der Oxidationsstufe Ir^{5+} vorliegt. Magnetische Messungen nach der Faradaymethode ergaben 4,79 Bohrsche Magnetonen. Dieses Ergebnis deutet auf Ir^{5+} in high-spin-Konfiguration hin, wofür in der Literatur Beispiele fehlen.

Die zahlreichen bisher entdeckten Halogenooxo-Ruthenate lassen wegen der kristallchemischen Ähnlichkeit der Elemente Iridium und Ruthenium weitere Halogenooxo-Iridate erwarten.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmittlen.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Zusammenarbeit m.b.H., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55209, des Autors und Zeitschriftenzitats angefordert werden.

Literatur

- 1 J. J. Randall, L. Katz und R. Ward, J. Am. Chem. Soc., 79 (1957) 266.
- 2 J. J. Randall und R. Ward, J. Am. Chem. Soc., 81 (1959) 2629.
- 3 J. G. Dickson, L. Katz und R. Ward, J. Am. Chem. Soc., 83 (1961) 3026.
- 4 P. C. Donohue, L. Katz und R. Ward, Inorg. Chem., 5 (1966) 335.
- 5 J. M. Longo, J. A. Kafalas und R. J. Arnott, J. Solid State Chem., 3 (1971) 79.
- 6 I. Thumm, U. Treiber und S. Kemmler-Sack, J. Solid State Chem., 35 (1980) 156.
- 7 I. Thumm, U. Treiber und S. Kemmler-Sack, Z. anorg. allg. Chem., 477 (1981) 161.
- 8 C. Lang und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 574 (1989) 169.
- 9 C. Lang und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 568 (1989) 29.
- 10 C. Lang und Hk. Müller-Buschbaum, Monatsh. Chem., 120 (1989) 705.
- 11 C. Lang und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 580 (1990) 71.
- 12 C. Lang und Hk. Müller-Buschbaum, J. Less-Common Met., 157 (1990) 301.
- 13 J. Wilkens und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 592 (1991) 79.
- 14 Hk. Müller-Buschbaum und M. Neubacher, Z. anorg. allg. Chemn., 586 (1990) 87.
- 15 M. Neubacher und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 594 (1991) 133.
- 16 C. Lang und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 587 (1990) 39.
- 17 J. Wilkens und Hk. Müller-Buschbaum, Acta Chem. Scand., 45 (1991) 812.
- 18 J. Wilkens und Hk. Müller-Buschbaum, J. Alloys Comp., 171 (1991) 255.
- 19 M. Neubacher und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 602 (1991) 143.
- 20 W. Leib und Hk. Müller-Buschbaum, Z. anorg. allg. Chem., 551 (1987) 7.
- 21 G. M. Sheldrick, SHELX-Program for Crystal Structure Determination, Version 1.1.1976, Cambridge.
- 22 C. K. Johnson, Rep. ORNL-3794, 1965, (Oak Ridge National Laboratory, TN).
- 23 K.-B. Plötz, Dissertation, Kiel, 1982.
- 24 N. Walker und D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.